Double-Grating Displacement Structure for Improving the Light Extraction Efficiency of LEDs

نویسندگان

  • Zhibin Wang
  • Yang Hao
  • Zhongdong Wang
  • Xian Liu
  • Qian Zhang
  • Dandan Zhu
چکیده

To improve the light extraction efficiency of light-emitting diodes (LEDs), grating patterns were etched on GaN and silver film surfaces. The grating-patterned surface etching enabled the establishment of an LED model with a double-grating displacement structure that is based on the surface plasmon resonance principle. A numerical simulation was conducted using the finite difference time domain method. The influence of different grating periods for GaN surface and silver film thickness on light extraction efficiency was analyzed. The light extraction efficiency of LEDs was highest when the grating period satisfied grating coupling conditions. The wavelength of the highest value was also close to the light wavelength of the medium. The plasmon resonance frequencies on both sides of the silver film were affected by silver film thickness. With increasing film thickness, plasmon resonance frequency tended toward the same value and light extraction efficiency reached its maximum. When the grating period for the GaN surface was 365 nm and the silver film thickness was 390 nm, light extraction efficiency reached a maximum of 55%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and fabrication of high-index-contrast self-assembled texture for light extraction enhancement in LEDs.

We developed a high-index-contrast photonic structure for improving the light extraction efficiency of light-emitting diodes (LEDs) by a self-assembly approach. In this approach, a two-dimensional grating can be non-lithographically integrated on the top of virtually any types of LEDs with controlled structural parameters and material indices. As a proof of concept, our designed photonic struct...

متن کامل

Optical properties of highly polarized InGaN light-emitting diodes modified by plasmonic metallic grating.

We implement finite-difference time-domain (FDTD) method to simulate the optical properties of highly polarized InGaN light emitting diodes (LEDs) coupled with metallic grating structure. The Purcell factor (Fp), light extraction efficiency (LEE), internal quantum efficiency (IQE), external quantum efficiency (EQE), and modulation frequency are calculated for different polarized emissions. Our ...

متن کامل

Efficient optimization method for the light extraction from periodically modulated LEDs using reciprocity.

The incoherent emission of periodically structured Light Emitting Diodes (LEDs) can be computed at relatively low computational cost by applying the reciprocity method. We show that by another application of the reciprocity principle, the structure of the LED can be optimized to obtain a high emission. We demonstrate the method by optimizing one-dimensional grating structures. The optimized str...

متن کامل

Enhanced light extraction from a GaN-based green light-emitting diode with hemicylindrical linear grating structure.

Significant enhancement in the light output from GaN-based green light-emitting diodes (LEDs) was achieved with a hemicylindrical grating structure on the top layer of the diodes. The grating structure was first optimized by the finite-difference time-domain (FDTD) method, which showed that the profile of the grating structure was critical for light extraction efficiency. It was found that the ...

متن کامل

Distributed Reflector Structure and Diffraction Grating Structure in the Solar Cell

Today, due to qualitative growth and scientific advances, energy, especially electricity is increasingly needed by human society. One of the almost endless and pure energy which have been paid attention over the years is the solar energy. Solar cells directly convert solar energy into electrical energy and are one of the main blocks of photovoltaic systems. Significant improvement has been made...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012